月之暗面 Kimi 开源 Moonlight:30 亿 / 160 亿参数混合专家模型

月之暗面 Kimi 开源 Moonlight:30 亿 / 160 亿参数混合专家模型

作者: 发表时间:2025-12-18 6:27:15
呼和浩特市征地服务app 林芝市服务大厅app 攀枝花市土木工程app 许昌市公开信息app 潮州市粮食管理app 抚顺市养老服务app 镇江市政务服务app 佳木斯市劳动局app 七台河市风力发电app 林芝市第五高中app 石楼县财政信息app 洛浦县农业局app 望谟县建设局信息app 拜城县便民app 宜丰县市场监督app 阜宁县政府信息公开指南app 安义县残联app 高青县政府信息公开指南app 乾县第二中学app 勃利县桥梁管理app 眉县电力app 皮山县防火app 祁县水务app 通山县第二中学app

本站 2 月 24 日消息,月之暗面 Kimi 昨日发布了“Muon 可扩展用于 LLM 训练”的新技术报告,并宣布推出“Moonlight”:一个在 Muon 上训练的 30 亿 / 160 亿参数混合专家模型(MoE)。使用了 5.7 万亿个 token,在更低的浮点运算次数(FLOPs)下实现了更好的性能,从而提升了帕累托效率边界。

月之暗面称,团队发现 Muon 优化器可通过添加权重衰减、仔细调整每个参数的更新幅度等技术进行扩展,并具备如下亮点:

这些技术使得 Muon 能够在大规模训练中开箱即用,无需进行超参数调优。扩展法则实验表明,与计算最优训练的 AdamW 相比,Muon 实现了约 2 倍的计算效率。

本次论文所使用的模型为 Moonlight-16B-A3B,总参数量为 15.29B,激活参数为 2.24B,其使用 Muon 优化器,在 5.7T Tokens 的训练数据下获得上述成绩。

我们的模型不仅突破了当前的 Pareto 前沿,还在训练所需的 FLOP 数大幅减少的情况下,达到了比以往模型更优的性能。

我们开源了一个分布式版本的 Muon 实现,它在内存使用和通信效率上都进行了优化。同时,我们也发布了预训练模型、经过指令调优的模型以及中间训练检查点,旨在为未来的研究提供支持。

本站附有关链接如下:

    GitHub:点此前往

    Hugging Face :点此前往

相关文章