小红书开源语音识别模型FireRedASR登场,中文识别准确率出类拔萃

小红书开源语音识别模型FireRedASR登场,中文识别准确率出类拔萃

作者: 发表时间:2025-12-04 3:53:32
灵石县榆社县公益app 古县通讯协会app 右玉县最新新闻app 左云县公开信息app 馆陶县第二中学app 芮城县财政信息app 饶河县工程造价app 和顺县第五高中app 怀安县粮食管理app 交城县助农app 广宗县城乡建设app 石楼县桥梁管理app 巨鹿县土地局app 苍南县政府信息公开指南app 泰来县申建app 乡宁县惠农app 突泉县公益app 淳安县电力app 多伦县信息公开app 绛县应急管理app 赵县第一高中app 桐庐县不良信息举报app 彰武县通讯协会app 法库县历史记录app 海兴县土地申报app 大箐山县数据管理局app 黎城县中心校app

近日,小红书旗下的 FireRed 团队推出了全新的开源语音识别模型——FireRedASR。该模型作为基于大模型构建的语音识别系统,在多个标准测试集中都斩获了极为优异的成绩,无疑为中文语音识别技术带来了重大突破。

小红书开源语音识别模型FireRedASR登场,中文识别准确率出类拔萃

FireRedASR 的核心指标是字错误率(CER),该指标越低,表示模型的识别效果越好。在最近的公开测试中,FireRedASR 的 CER 达到了3.05%,较之前的最佳模型 Seed-ASR 降低了8.4%。这一结果显示出 FireRed 团队在语音识别技术上的创新能力。

FireRedASR 模型分为两种核心结构:FireRedASR-LLM 和 FireRedASR-AED。前者专注于极致的语音识别精度,后者则在准确率与推理效率之间实现了良好的平衡。团队提供了不同规模的模型和推理代码,以满足各种应用场景的需求。

在多个日常应用场景中,FireRedASR 同样展现了强大的性能。在由短视频、直播和语音输入等多种来源组成的测试集中,FireRedASR-LLM 的 CER 相较于业内领先的服务提供商降低了23.7% 至40%。特别是在需要歌词识别的场景中,该模型的表现尤为突出,CER 实现了50.2% 至66.7% 的相对降低。

此外,FireRedASR 还在中文方言和英语场景中表现优异,其 CER 在 KeSpeech 和 LibriSpeech 测试集上显著优于之前的开源模型,证明其在多种语言环境中的鲁棒性和适应性。

FireRed 团队希望通过开源这一新模型,推动语音识别技术的发展和应用,为语音交互的未来贡献力量。所有模型和代码已在 GitHub 上公开,鼓励更多开发者和研究者参与其中。

相关文章